Module std::prim_tuple1.0.0[][src]

Expand description

A finite heterogeneous sequence, (T, U, ..).

Let’s cover each of those in turn:

Tuples are finite. In other words, a tuple has a length. Here’s a tuple of length 3:

("hello", 5, 'c');

‘Length’ is also sometimes called ‘arity’ here; each tuple of a different length is a different, distinct type.

Tuples are heterogeneous. This means that each element of the tuple can have a different type. In that tuple above, it has the type:

(&'static str, i32, char)

Tuples are a sequence. This means that they can be accessed by position; this is called ‘tuple indexing’, and it looks like this:

let tuple = ("hello", 5, 'c');

assert_eq!(tuple.0, "hello");
assert_eq!(tuple.1, 5);
assert_eq!(tuple.2, 'c');

The sequential nature of the tuple applies to its implementations of various traits. For example, in PartialOrd and Ord, the elements are compared sequentially until the first non-equal set is found.

For more about tuples, see the book.

Trait implementations

If every type inside a tuple implements one of the following traits, then a tuple itself also implements it.

Due to a temporary restriction in Rust’s type system, these traits are only implemented on tuples of arity 12 or less. In the future, this may change.


Basic usage:

let tuple = ("hello", 5, 'c');

assert_eq!(tuple.0, "hello");

Tuples are often used as a return type when you want to return more than one value:

fn calculate_point() -> (i32, i32) {
    // Don't do a calculation, that's not the point of the example
    (4, 5)

let point = calculate_point();

assert_eq!(point.0, 4);
assert_eq!(point.1, 5);

// Combining this with patterns can be nicer.

let (x, y) = calculate_point();

assert_eq!(x, 4);
assert_eq!(y, 5);