Module std::prim_char1.0.0[][src]

Expand description

A character type.

The char type represents a single character. More specifically, since ‘character’ isn’t a well-defined concept in Unicode, char is a ‘Unicode scalar value’, which is similar to, but not the same as, a ‘Unicode code point’.

This documentation describes a number of methods and trait implementations on the char type. For technical reasons, there is additional, separate documentation in the std::char module as well.


char is always four bytes in size. This is a different representation than a given character would have as part of a String. For example:

let v = vec!['h', 'e', 'l', 'l', 'o'];

// five elements times four bytes for each element
assert_eq!(20, v.len() * std::mem::size_of::<char>());

let s = String::from("hello");

// five elements times one byte per element
assert_eq!(5, s.len() * std::mem::size_of::<u8>());

As always, remember that a human intuition for ‘character’ might not map to Unicode’s definitions. For example, despite looking similar, the ‘é’ character is one Unicode code point while ‘é’ is two Unicode code points:

let mut chars = "é".chars();
// U+00e9: 'latin small letter e with acute'

let mut chars = "é".chars();
// U+0065: 'latin small letter e'
// U+0301: 'combining acute accent'

This means that the contents of the first string above will fit into a char while the contents of the second string will not. Trying to create a char literal with the contents of the second string gives an error:

error: character literal may only contain one codepoint: 'é'
let c = 'é';

Another implication of the 4-byte fixed size of a char is that per-char processing can end up using a lot more memory:

let s = String::from("love: ❤️");
let v: Vec<char> = s.chars().collect();

assert_eq!(12, std::mem::size_of_val(&s[..]));
assert_eq!(32, std::mem::size_of_val(&v[..]));